题目内容

【题目】如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xb“拼接”而成.

(1)求F(x)的解析式;
(2)比较ab与ba的大小;
(3)已知(m+4)b<(3﹣2m)b , 求m的取值范围.

【答案】
(1)解:由题意得 解得 ,∴
(2)解:因为 ,所以 ,即ab<ba
(3)解:由题意

所以 解得

所以m的取值范围是


【解析】(1)根据图象过点( ),求出a,b,可得F(x)的解析式;(2)根据指数函数和幂函数的图象比较即可;(3)根据幂函数的单调性,即可求m的取值范围.
【考点精析】利用指数函数的图像与性质对题目进行判断即可得到答案,需要熟知a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网