题目内容
【题目】下列命题中不正确的个数是( )
①若直线上有无数个点不在平面内,则;
②和两条异面直线都相交的两条直线异面;
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
④一条直线和两条异面直线都相交,则它们可以确定两个平面.
A.0B.1C.2D.3
【答案】D
【解析】
A:根据线面位置关系进行判断即可;
B:通过长方体举特例进行判断即可;
C:根据线面平行的性质进行判断即可;
D:根据确定平面定理,结合异面直线的定义进行判断即可.
A:当直线与平面相交时,直线上也存在有无数个点不在平面内,故本说法不正确;
B:如下图,在长方体中,都与异面直线都相交,而是相交直线,故本说法不正确;
C:如果两条平行直线中的一条与一个平面平行,那么另一条有可能在该平面内,故本说法不正确;
D:两个相交线可以确定一个平面,因此一条直线和两条异面直线都相交,一共能确定两个平面,如果这两个平面重合,这与异面直线的定义相矛盾,故本说法是正确的.
【题目】某学校为了了解初三学生的体育锻炼情况,随机抽取了40名学生对一周的体育锻炼时间长(单位:小时)进行统计,并将数据整理如下:
时间长 性别 | |||||
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)采用样本估计总体的方式,试估计该校的所有学生中一周的体育锻炼时间长为的概率;
(2)若将一周的体育锻炼时间长不低于3小时的评定为“体育锻炼合格者”,否则为“不合格者”,根据以上数据完成下面的列联表,并据此判断能否有95%的把握认为体育锻炼与性别有关?附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:
空气质量指数() | 0-50 | 51-100 | 101-150 | 151-200 | 201-250 |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 | 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;
(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件“两天空气都为良”发生的概率.