题目内容
【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A. B. C. D.
【答案】C
【解析】
设第一张卡片上的数字为,第二张卡片的数字为,问题求的是,
首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出的可能性有多少种,然后求出.
设第一张卡片上的数字为,第二张卡片的数字为, 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有种情况,
当时,可能的情况如下表:
个数 | ||
1 | 1,2,3,4,5 | 5 |
2 | 2,3,4,5 | 4 |
3 | 3,4,5 | 3 |
4 | 4,5 | 2 |
5 | 5 | 1 |
,故本题选C.
练习册系列答案
相关题目
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望;
(ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望.