题目内容
【题目】在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.
【答案】(1),;(2) .
【解析】
(1)先把直线和曲线的参数方程化成普通方程,再化成极坐标方程;
(2)联立极坐标方程,根据极径的几何意义可得,再由面积可解得极角,从而可得.
(1)直线的参数方程是为参数),
消去参数得直角坐标方程为:.
转换为极坐标方程为:,即.
曲线的参数方程是(为参数),
转换为直角坐标方程为:,
化为一般式得
化为极坐标方程为:.
(2)由于,得,.
所以,
所以,
由于,所以,
所以.
练习册系列答案
相关题目
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望;
(ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望.