题目内容
【题目】在平面直角坐标系中,为坐标原点,已知向量,又点,,,.
(1)若,且,求向量;
(2)若向量与向量共线,常数,求的值域.
【答案】(1)或;(2)当时的值域为.
时的值域为.
【解析】分析:(1)由已知表示出向量,再根据,且,建立方程组求出,即可求得向量;
(2)由已知表示出向量,结合向量与向量共线,常数,建立的表达式,代入 ,对分类讨论,综合三角函数和二次函数的图象与性质,即可求出值域.
详解:(1),∵,且,
∴,,
解得,时,;时,.
∴向量或.
(2),∵向量与向量共线,常数,
∴,
∴ .
①当即时,当时,取得最大值,
时,取得最小值,此时函数的值域为.
②当即时,当时,取得最大值,
时,取得最小值,此时函数的值域为.
综上所述,当时的值域为.
时的值域为.
【题目】学校从参加高一年级期中考试的学生中抽出名学生,并统计了她们的数学成绩(成绩均为整数且满分为分),数学成绩分组及各组频数如下:
样本频率分布表:
分组 | 频数 | 频率 |
合计 |
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在分以上(含分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在的学生中选两位同学,共同帮助成绩在中的某一位同学.已知甲同学的成绩为分,乙同学的成绩为分,求甲、乙两同学恰好被安排在同一小组的概率.
【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.
分组 | 频数 | 频率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合计 | 100 | 1.00 |
(1)求的值并估计这100名考生成绩的平均分;
(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;