题目内容
【题目】在平面直角坐标系 中,过椭圆 右焦点 的直线交椭圆于两点 , 为 的中点,且 的斜率为 .
(1)求椭圆的标准方程;
(2)设过点 的直线 (不与坐标轴垂直)与椭圆交于 两点,问:在 轴上是否存在定点 ,使得 为定值?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1)(2)当点的坐标为 时, 为定值.
【解析】试题分析:
(1)利用题意结合几何关系可求得 ,所以椭圆 的方程为
(2)设出直线方程,与椭圆方程联立,整理可得当点的坐标为 时, 为定值.
试题解析:
解:(1) 设 ,则 ,两式相减得,
,又 , 为的中点,且 的斜率为 ,所以 ,即 ,所以可以解得 ,即 ,即 ,又因为 ,所以椭圆 的方程为 .
(2) 设直线的方程为 ,代入椭圆 的方程为,得 ,设 ,则 .
,根据题意,假设轴上存在定点 ,使得 为定值,则有
,要使上式为定值,即与 无关,则应 ,即 ,故当点的坐标为 时, 为定值.
【题目】某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销 天,两个厂家提供的返利,方案如下:甲厂家每天固定返利元,且每卖出一件产品厂家再返利元,乙厂家无固定返利,卖出件以内(含件)的产品,每件产品厂家返利元,超出件的部分每件返利元,分别记录其天内的销售件数,得到如下频数表:
甲厂家销售件数频数表:
销售件数 |
|
|
|
|
|
天数 |
|
|
|
乙厂家销售件数频数表:
销售件数 |
|
|
|
|
|
天数 |
(1) 现从甲厂家试销的天中抽取两天,求一天销售量大于而另一天销售量小于的概率;
(2)若将频率视作概率,回答以下问题:
①记乙厂家的日返利为 (单位:元),求的分布列和数学期望;
②商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.