题目内容
【题目】已知,函数
,直线l:
.
讨论
的图象与直线l的交点个数;
若函数
的图象与直线l:
相交于
,
两点
,证明:
.
【答案】(1)见解析(2)见证明
【解析】
根据函数与方程的关系,设
,求函数的导数,研究函数的单调性和极值,结合极值与0的关系进行判断即可.
构造函数
,求函数的导数,结合
与l的交点坐标,进行证明即可.
解:由題意,令
,
则,
令,解得
.
所以在
上单调递增,
令,解得
,所以
在
上单调递减,
则当时,函数取得极小值,同时也是最小值
,
当
,即
时,
的图象与直线l无交点,
当
,即
时
的图象与直线l只有一个交点.
当
,即
时
的图象与直线l有两个交点.
综上所述,当时,
的图象与直线l无交点;
时
的图象与直线l只有一个交点,
时
的图象与直线l有两个交点.
证明:令
,
,
,
,即
在
上单调递增,
,
时,
恒成立,
又,
,
,
又
,
在
上单调递增,
即
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目