题目内容

已知正项数列满足:时,
(1)求数列的通项公式;
(2)设,数列的前n项和为,是否存在正整数m,使得对任意的恒成立?若存在,求出所有的正整数m;若不存在,说明理由。
解:①由

   ∴
 而
  即
,由正项数列知………………6分
②由

 而
∴当m=2或m=3时
使恒成立………………13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网