题目内容
【题目】设函数,则满足f(f(a))=2f(a)的a的取值范围是( )
A. B. [0,1]
C. D. [1,+∞)
【答案】C
【解析】
令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.
令f(a)=t,
则f(t)=2t,
当t<1时,3t﹣1=2t,
由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2tln2,
在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,
即有g(t)<g(1)=0,
则方程3t﹣1=2t无解;
当t≥1时,2t=2t成立,
由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;
或a≥1,2a≥1解得a≥0,即为a≥1.
综上可得a的范围是a≥.
故选:C.
练习册系列答案
相关题目
【题目】某种商品在天内每件的销售价格(元)与时间()(天)的函数关系满足函数,该商品在天内日销售量(件)与时间()(天)之间满足一次函数关系如下表:
第天 | ||||
件 |
(1)根据表中提供的数据,确定日销售量与时间的一次函数关系式;
(2)求该商品的日销售金额的最大值并指出日销售金额最大的一天是天中的第几天,(日销售金额每件的销售价格日销售量)