题目内容

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

【答案】1)因为,消去参数,得,即

极坐标方程为

2的普通方程为,联立的方程,解得,所以交点的极坐标为.

【解析】

试题分析:(1) 先根据同角三角函数关系cos2tsin2t=1消参数得普通方程:(x42+(y5225 ,再根据将普通方程化为极坐标方程:2)将代入,也可利用直角坐标方程求交点,再转化为极坐标

试题解析: (1∵C1的参数方程为

x42+(y5225cos2tsin2t)=25

C1的直角坐标方程为(x42+(y5225

代入(x42+(y5225

化简得:.[Z.X.X.K]

2C2的直角坐标方程为x2y22yC1的直角坐标方程为(x42+(y5225

∴C1C2交点的直角坐标为(11),(02.

∴C1C2交点的极坐标为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网