题目内容
19.已知ab>0,bc>0,则直线ax+by=c通过( )A. | 第一、二、三象限 | B. | 第一、二、四象限 | C. | 第一、三、四象限 | D. | 第二、三、四象限 |
分析 利用直线斜率与截距的意义即可得出.
解答 解:直线ax+by=c化为$y=-\frac{a}{b}x+\frac{c}{b}$.
∵ab>0,bc>0,
∴$-\frac{a}{b}$<0,$\frac{c}{b}$>0,
∴直线通过第一、二、四象限.
故选:B.
点评 本题考查了直线斜率与截距的意义,属于基础题.
练习册系列答案
相关题目
9.a、b、c∈R且ab>0,则下面推理中正确的是( )
A. | a>b⇒am2>bm2 | B. | $\frac{a}{c}$>$\frac{b}{c}$⇒a>b | C. | a3>b3⇒$\frac{1}{a}$<$\frac{1}{b}$ | D. | a2<b2⇒a>b |
7.已知a=${∫}_{0}^{\frac{π}{2}}$$\frac{cosx}{2}$dx,则(ax-$\frac{1}{2ax}$)9的展开式中,关于x的一次项的系数为( )
A. | $\frac{63}{16}$ | B. | -$\frac{63}{16}$ | C. | $\frac{63}{8}$ | D. | -$\frac{63}{8}$ |
14.已知函数f(x)=$\left\{\begin{array}{l}sinx,sinx≥cosx\\ cosx,sinx<cosx\end{array}$,则下列结论正确的是( )
A. | f(x)是奇函数 | B. | f(x)在[0,$\frac{π}{2}$]上递增 | C. | f(x)是周期函数 | D. | f(x)的值域为[-1,1] |
11.下列说法错误的是( )
A. | 若p∧q为假命题,则p,q均为假命题 | |
B. | 命题“若x2-x=0,则x=0”的逆否命题为:“若x≠0,则x2-x≠0” | |
C. | “x=0”是“x2-x=0”的充分不必要条件 | |
D. | 命题“x2+x-m=0没有实根,则m≤0”是真命题 |