题目内容
【题目】在锐角△ABC中,角A,B,C的对边分别为a,b,c,满足 = .
(1)求角A的大小;
(2)若a= ,△ABC的面积S△ABC=3 ,求b+c的值,;
(3)若函数f(x)=2sinxcos(x+ ),求f(B)的取值范围.
【答案】
(1)解:锐角△ABC中,角A,B,C的对边分别为a,b,c,满足 = ,
∴ = ,
整理,得bc=b2+c2﹣a2,
∴cosA= = = ,
∴A= .
(2)解:∵a= ,△ABC的面积S△ABC=3 ,A= ,
∴S△ABC= =3 ,解得bc=12,
cosA= = = ,解得b2+c2=25,
∴(b+c)2=b2+c2+2bc=25+24=49,
∴b+c=7
(3)解:∵f(x)=2sinxcos(x+ )
=2sinx(cosxcos ﹣sinxsin )
= sinxcosx﹣sin2x
= sin2x﹣
= sin2x+ cos2x﹣
=cos sin2x+sin cos2x﹣
=sin(2x+ )﹣ ,
∵A= ,∴锐角△ABC中,B∈(0, ),∴2B+ ∈( , ),
f(B)=sin(2B+ )﹣ ,
当2B+ = 时,f(B)max=1﹣ = ,
当2B+ = 时,f(B)min=﹣ ﹣ =﹣ ﹣ .
∴f(B)的取值范围是(﹣ , )
【解析】(1)利用余弦定理推导出bc=b2+c2﹣a2,从而求出cosA= ,进而能求出A.(2)由S△ABC= =3 ,得bc=12,由余弦定理求出b2+c2=25,从而求出(b+c)2,进而求出b+c的值.(3)由f(x)=2sinxcos(x+ )=sin(2x+ )﹣ ,A= ,得2B+ ∈( , ),由此能求出f(B)=sin(2B+ )﹣ 的取值范围.