题目内容

18.求证:$\frac{1}{1•\sqrt{1}}$+$\frac{1}{2•\sqrt{2}}$+$\frac{1}{3•\sqrt{3}}$+…+$\frac{1}{n•\sqrt{n}}$<3.

分析 运用放缩法证明.由$\frac{1}{\sqrt{{k}^{3}}}$<$\frac{1}{\sqrt{({k}^{2}-\frac{1}{4})•k}}$=$\frac{\sqrt{2k-1}+\sqrt{2k+1}}{\sqrt{k}}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$).可得$\frac{1}{\sqrt{{k}^{3}}}$<2$\sqrt{2}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$).再由裂项相消求和和不等式的性质,即可得证.

解答 证明:$\frac{1}{\sqrt{{k}^{3}}}$<$\frac{1}{\sqrt{({k}^{2}-\frac{1}{4})•k}}$=$\frac{2\sqrt{2}}{\sqrt{(2k-1)•2k•(2k+1)}}$
=$\frac{\sqrt{2k-1}+\sqrt{2k+1}}{\sqrt{k}}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$).
其中($\sqrt{2k-1}$+$\sqrt{2k+1}$)2=4k+2$\sqrt{4{k}^{2}-1}$<4k+4k=8k,
则$\frac{1}{\sqrt{{k}^{3}}}$<2$\sqrt{2}$•($\frac{1}{\sqrt{2k-1}}$-$\frac{1}{\sqrt{2k+1}}$).
即有$\frac{1}{1•\sqrt{1}}$+$\frac{1}{2•\sqrt{2}}$+$\frac{1}{3•\sqrt{3}}$+…+$\frac{1}{n•\sqrt{n}}$<2$\sqrt{2}$[(1-$\frac{1}{\sqrt{3}}$)+($\frac{1}{\sqrt{3}}$-$\frac{1}{\sqrt{5}}$)+…+($\frac{1}{\sqrt{2n-1}}$-$\frac{1}{\sqrt{2n+1}}$)]
=2$\sqrt{2}$(1-$\frac{1}{\sqrt{2n+1}}$)<2$\sqrt{2}$<3.
故原不等式成立.

点评 本题考查不等式的证明,考查放缩法证明不等式的方法,考查推理能力和不等式的性质,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网