题目内容

6.设f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,则f[g(π)]=7,g[f(2)]=2.

分析 由已知中分段函数f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,代入即可得到答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,
∴f[g(π)]=f(2)=7,
g[f(2)]=g(7)=2.
故答案为:7,2

点评 本题考查的知识点是分段函数的应用,分段函数求值,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网