题目内容
【题目】选修4一4:坐标系与参数方程
已知曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的极坐标方程和的直角坐标方程;
(2)已知点的极坐标分别为和,直线与曲线相交于两点,射线
与曲线相交于点,射线与曲线相交于点,求的值.
【答案】(1), (2)
【解析】试题分析:(1)利用cos2θ+sin2θ=1,即可曲线C1的参数方程化为普通方程,进而利用 即可化为极坐标方程,同理可得曲线C2的直角坐标方程;
(2)由点M1、M2的极坐标可得直角坐标:M1(0,1),M2(2,0),可得直线M1M2的方程为 此直线经过圆心,可得线段PQ是圆x2+(y-1)2=1的一条直径,可得得OA⊥OB,A,B是椭圆上的两点,在极坐标下,设A(ρ1,θ),B(ρ2,θ+) 代入椭圆的方程即可得解.
试题解析:
(1)曲线的普通方程为,化成极坐标方程为
曲线的直角坐标方程为
(2)在直角坐标系下, ,可得直线M1M2的方程为 此直线经过圆心,可得线段是圆的直径
∴ 由得, 是椭圆上的两点,在极坐标下,设
分别代入中,
有和
∴
则,即.
练习册系列答案
相关题目