题目内容

(本小题满分14分)已知定义域为的函数是奇函数                   
⑴求函数的解析式;
⑵判断并证明函数的单调性;
⑶若对于任意的,不等式恒成立,求的取值范围.                                             

(1)(2)减函数,证明见解析(3)

解析试题分析:⑴∵为奇函数,
 , 解得
所以,检验得 ,满足条件.                      …4分
上的减函数
证明:设
 
     
    即 
 为减函数                                                     …8分
⑶∵,
为奇函数,,
.
为减函数  即恒成立,
时显然不恒成立,
所以                                           …14分
考点:本小题主要考查利用奇偶性求函数解析式,判断并证明函数的单调性,利用函数的单调性求解抽象不等式以及恒成立问题.
点评:如果奇函数在处有意义,则这一性质在解题时可以简化运算,特别好用,另外在用定义证明单调性时一定要把结果化到最简,尽量不要用已知函数的单调性来判断未知函数的单调性.解抽象不等式,关键是利用单调性“脱去”外层符号,得出具体的不等式,这一过程中要注意定义域是否有影响.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网