题目内容
【题目】已知双曲线的左、右焦点分别为,实轴长为4,渐近线方程为,点N在圆上,则的最小值为( )
A. B. 5C. 6D. 7
【答案】B
【解析】
求得双曲线的a,b,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接CF2,交双曲线于M,圆于N,计算可得所求最小值.
由题意可得2a=4,即a=2,
渐近线方程为y=±x,即有,
即b=1,可得双曲线方程为y2=1,
焦点为F1(,0),F2,(,0),
由双曲线的定义可得|MF1|=2a+|MF2|=4+|MF2|,
由圆x2+y2﹣4y=0可得圆心C(0,2),半径r=2,
|MN|+|MF1|=4+|MN|+|MF2|,
连接CF2,交双曲线于M,圆于N,
可得|MN|+|MF2|取得最小值,且为|CF2|3,
则则|MN|+|MF1|的最小值为4+3﹣2=5.
故选:B.
练习册系列答案
相关题目