题目内容
【题目】在直角坐标系中,倾斜角为的直线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于,两点,且,求直线的倾斜角.
【答案】(1) ; (2) 或.
【解析】
(1)根据平方关系消参数得直线的普通方程,根据得曲线的直角坐标方程(2)利用直线参数方程几何意义求解.
(1)因为直线的参数方程为(为参数),
当时,直线的直角坐标方程为.
当时,直线的直角坐标方程为.
因为,
因为,所以.
所以的直角坐标方程为.
(2)解法1:曲线的直角坐标方程为,
将直线的参数方程代入曲线的方程整理,得.
因为,可设该方程的两个根为,,
则 ,.
所以 .
整理得,
故.
因为,所以或,
解得或
综上所述,直线的倾斜角为或.
解法2:直线与圆交于,两点,且,
故圆心到直线的距离.
①当时,直线的直角坐标方程为,符合题意.
②当时,直线的方程为.
所以,整理得.
解得.
综上所述,直线的倾斜角为或.
【题目】某超市开展年终大回馈,设计了两种答题游戏方案:
方案一:顾客先回答一道多选题,从第二道开始都回答单选题;
方案二:顾客全部选择单选题进行回答;
其中每道单选题答对得2分,每道多选题答对得3分,无论单选题还是多选题答错都得0分,每名参与的顾客至多答题3道.在答题过程中得到3分或3分以上立刻停止答题,并获得超市回馈的赠品.
为了调查顾客对方案的选择情况,研究人员调查了参与游戏的500名顾客,所得结果如下表所示:
男性 | 女性 | |
选择方案一 | 150 | 80 |
选择方案二 | 150 | 120 |
(1)是否有95%的把握认为方案的选择与性别有关?
(2)小明回答每道单选题的正确率为0.8,多选题的正确率为0.75,.
①若小明选择方案一,记小明的得分为,求的分布列及期望;
②如果你是小明,你觉得选择哪种方案更有可能获得赠品,请通过计算说明理由.
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
经济损失 4000元以下 | 经济损失 4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.
附:临界值表
参考公式: .