题目内容

17.已知函数$f(x)=lnx-\frac{1}{x}$,g(x)=ax.
(1)若直线y=g(x)是函数$y=f(x)+\frac{1}{x}$的图象的一条切线,求实数a的值;
(2)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;
(3)若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取$\sqrt{2}$为1.4)

分析 (1)求导数,利用直线y=g(x)是函数$y=f(x)+\frac{1}{x}$的图象的一条切线,求实数a的值;
(2)把f(x)和g(x)代入h(x)=f(x)-g(x),求其导函数,结合h(x)在(0,+∞)上单调递增,可得对?x>0,都有h′(x)≥0,得到a≤$\frac{1}{x}+\frac{1}{{x}^{2}}$,即可得到a的取值范围;
(3)先证明lnx1x2-$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{2}-{x}_{1}}$$ln\frac{{x}_{2}}{{x}_{1}}$,证明ln$\sqrt{{x}_{1}{x}_{2}}$-$\frac{2}{\sqrt{{x}_{1}{x}_{2}}}$>1,令G(x)=lnx-$\frac{2}{x}$,再由导数确定G(x)在(0,+∞)上单调递增,然后结合ln$\sqrt{2}$e-$\frac{2}{\sqrt{2}e}$=$\frac{1}{2}$ln2+1-$\frac{\sqrt{2}}{e}$≈0.85<1得到$\sqrt{{x}_{1}{x}_{2}}$>$\sqrt{2}$e,即x1x2>2e2

解答 (1)解:设切点(x0,lnx0),则切线方程为y-lnx0=$\frac{1}{{x}_{0}}$(x-x0),即y=$\frac{x}{{x}_{0}}$+lnx0-1,
∴$\frac{1}{{x}_{0}}$=a,lnx0-1=0,
∴a=$\frac{1}{e}$;
(2)解:h(x)=f(x)-g(x)=lnx-$\frac{1}{x}$-ax-b,则h′(x)=$\frac{1}{x}+\frac{1}{{x}^{2}}$-a,
∵函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,
∴x>0时,h′(x)≥0,
∴a≤$\frac{1}{x}+\frac{1}{{x}^{2}}$,
设$\frac{1}{x}$=t(t≥1),则u(t)=t+t2,在(1,+∞)上单调递增,
∴u(t)min=u(1)=2,
∴a≤2;
(3)证明:由题意知$ln{x}_{1}-\frac{1}{{x}_{1}}$=ax1,lnx2-$\frac{1}{{x}_{2}}$=ax2
两式相加得lnx1x2-$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=a(x1+x2),
两式相减得$ln\frac{{x}_{2}}{{x}_{1}}$-$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$=a(x2-x1),
即$\frac{ln\frac{{x}_{2}}{{x}_{1}}}{{x}_{2}-{x}_{1}}+\frac{1}{{x}_{1}{x}_{2}}$=a,
∴lnx1x2-$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=($\frac{ln\frac{{x}_{2}}{{x}_{1}}}{{x}_{2}-{x}_{1}}+\frac{1}{{x}_{1}{x}_{2}}$)(x1+x2),
即lnx1x2-$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{2}-{x}_{1}}$$ln\frac{{x}_{2}}{{x}_{1}}$,
不妨令0<x1<x2,记t=$\frac{{x}_{2}}{{x}_{1}}$>1,
令F(t)=lnt-$\frac{2(t-1)}{t+1}$(t>1),则F′(t)=$\frac{(t-1)^{2}}{t(t+1)^{2}}$>0,
∴F(t)=lnt-$\frac{2(t-1)}{t+1}$在(1,+∞)上单调递增,
则F(t)=lnt-$\frac{2(t-1)}{t+1}$>F(1)=0,
∴lnt>$\frac{2(t-1)}{t+1}$,则$ln\frac{{x}_{2}}{{x}_{1}}$>$\frac{2({x}_{2}-{x}_{1})}{{x}_{1}+{x}_{2}}$,
∴lnx1x2-$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{2}-{x}_{1}}$$ln\frac{{x}_{2}}{{x}_{1}}$>2,
又lnx1x2-$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$<lnx1x2-$\frac{4\sqrt{{x}_{1}{x}_{2}}}{{x}_{1}{x}_{2}}$=2ln$\sqrt{{x}_{1}{x}_{2}}$-$\frac{4}{\sqrt{{x}_{1}{x}_{2}}}$
∴2ln$\sqrt{{x}_{1}{x}_{2}}$-$\frac{4}{\sqrt{{x}_{1}{x}_{2}}}$>2,即ln$\sqrt{{x}_{1}{x}_{2}}$-$\frac{2}{\sqrt{{x}_{1}{x}_{2}}}$>1
令G(x)=lnx-$\frac{2}{x}$,则x>0时,G′(x)=$\frac{1}{x}$+$\frac{2}{{x}^{2}}$>0,
∴G(x)在(0,+∞)上单调递增,
又ln$\sqrt{2}$e-$\frac{2}{\sqrt{2}e}$=$\frac{1}{2}$ln2+1-$\frac{\sqrt{2}}{e}$≈0.85<1,
∴G($\sqrt{{x}_{1}{x}_{2}}$)=ln$\sqrt{{x}_{1}{x}_{2}}$-$\frac{2}{\sqrt{{x}_{1}{x}_{2}}}$>1>ln$\sqrt{2}$e-$\frac{2}{\sqrt{2}e}$,
则$\sqrt{{x}_{1}{x}_{2}}$>$\sqrt{2}$e,即x1x2>2e2

点评 本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,体现了数学转化思想方法和函数构造法,本题综合考查了学生的逻辑思维能力和灵活应变能力,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网