题目内容
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
【答案】(Ⅰ)0.55;(Ⅱ);(Ⅲ)1.23.
【解析】试题分析:
试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故
(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故
又,故
因此所求概率为
(Ⅲ)记续保人本年度的保费为,则的分布列为
因此续保人本年度的平均保费与基本保费的比值为
练习册系列答案
相关题目
【题目】保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:
距消防站距离x(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
火灾损失费用y(千元) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果统计资料表明y与x有线性相关关系,试求:
(Ⅰ)求相关系数(精确到0.01);
(Ⅱ)求线性回归方程(精确到0.01);
(III)若发生火灾的某居民区与最近的消防站相距10.0千米,评估一下火灾的损失(精确到0.01).
参考数据:,,,
,,
参考公式:相关系数 ,回归方程 中斜率和截距的最小二乘估计公式分别为:,