题目内容
【题目】若定义域为R的偶函数y=f(x)满足f(x+2)=﹣f(x),且当x∈[0,2]时,f(x)=2﹣x2 , 则方程f(x)=sin|x|在[﹣3π,3π]内根的个数是 .
【答案】10
【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2), ∴f(x+4)=f(x),即f(x)的周期为4,
作出f(x)和y=sin|x|在(0,10)上的函数图象如图所示:
由图象可知两函数图象在(0,3π)上有5个交点,即5个零点,
又f(x)与y=sin|x|都是偶函数,故在(﹣3π,0)上也有5个零点,
∴f(x)=sin|x|在(﹣3π,3π)上有10个零点.
故答案为:10.
求出f(x)的周期,利用周期和对称性作出f(x)的函数图象,根据图象交点个数判断.
练习册系列答案
相关题目
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
【题目】在一段时间内,分5次测得某种商品的价格x(万元)和需求量y(t)之间的一组数据为:
1 | 2 | 3 | 4 | 5 | |
价格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)画出散点图;
(2)求出y对x的线性回归方程;
(3)如价格定为1.9万元,预测需求量大约是多少?(精确到0.01 t).
参考公式: .