题目内容
1.已知f′(x)是函数f(x)的导数,f(x)=f′(1)•2x+x2,f′(2)=( )A. | $\frac{12-8ln2}{1-2ln2}$ | B. | $\frac{2}{1-2ln2}$ | C. | $\frac{4}{1-2ln2}$ | D. | -2 |
分析 根据导数的运算法则,先求导,再求f′(1),f′(2).
解答 解:f′(x)=f′(1)•2xln2+2x,
∴f′(1)=f′(1)•2ln2+2,
∴f′(1)=$\frac{2}{1-2ln2}$,
∴f′(2)=f′(1)•22ln2+2×2=$\frac{2}{1-2ln2}$•4ln2+4=$\frac{4}{1-2ln2}$,
故选:C.
点评 本题考查了导数的运算法则,属于基础题.
练习册系列答案
相关题目
9.若在区间[-1,2]中随机地取一个数k,则使函数在f(x)=kx+1在R上为增函数的概率是( )
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
6.不等式1-$\frac{1}{x-1}$>0的解集是( )
A. | (2,+∞) | B. | (-∞,1) | C. | (1,2) | D. | (-∞,1)∪(2,+∞) |
10.已知关于x的方程(n+1)x2+mx-$\frac{n-1}{4}$=0(m,n∈R+)没有实数根,则关于x的方程4x2-4x+m+n=0有实数根的概率是( )
A. | $\frac{2}{7π}$ | B. | $\frac{2}{5π}$ | C. | $\frac{2}{3π}$ | D. | $\frac{2}{π}$ |
11.在对人们休闲方式的一次调查中,共调查了50人,其中女性25人,男性25人,女性中20人主要的休闲方式是看电视,另外5人主要的休闲方式是运动,男性中有10人主要的休闲方式是看电视,另外5人主要的休闲方式是运动,2×2列联表如下:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中(n=a+b+c+d)
附表:独立性检验临界值如下:
参照附表,得到的正确结论是( )
看电视 | 运动 | 合计 | |
女性 | 20 | 5 | 25 |
男性 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
附表:独立性检验临界值如下:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
A. | 有99.5%以上的把握认为“休闲方式与性别有关” | |
B. | 有99.5%以上的把握认为“休闲方式与性别无关” | |
C. | 在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别有关” | |
D. | 在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别无关” |