题目内容
11.在对人们休闲方式的一次调查中,共调查了50人,其中女性25人,男性25人,女性中20人主要的休闲方式是看电视,另外5人主要的休闲方式是运动,男性中有10人主要的休闲方式是看电视,另外5人主要的休闲方式是运动,2×2列联表如下:看电视 | 运动 | 合计 | |
女性 | 20 | 5 | 25 |
男性 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
附表:独立性检验临界值如下:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
A. | 有99.5%以上的把握认为“休闲方式与性别有关” | |
B. | 有99.5%以上的把握认为“休闲方式与性别无关” | |
C. | 在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别有关” | |
D. | 在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别无关” |
分析 根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到有99%的把握认为性别与休闲方式有关系.
解答 解:由题意,K2=$\frac{50(20×15-10×5)^{2}}{30×20×25×25}$=$\frac{50}{3}$>10.83,
∴在犯错误的概率不超过0.1%的前提下,认为“休闲方式与性别有关”,
故选:C.
点评 本题考查独立性检验的应用和列联表的做法,本题解题的关键是正确计算出这组数据的观测值,理解临界值对应的概率的意义.
练习册系列答案
相关题目
1.已知f′(x)是函数f(x)的导数,f(x)=f′(1)•2x+x2,f′(2)=( )
A. | $\frac{12-8ln2}{1-2ln2}$ | B. | $\frac{2}{1-2ln2}$ | C. | $\frac{4}{1-2ln2}$ | D. | -2 |
1.为调查某地区高三学生是否需要心理疏导,用简单随机抽样方法从该校调查了500位高三学生,结果如下:
(Ⅰ)估计该地区高三学生中,需要心理疏导的高三学生的百分比;
(Ⅱ)能否有99%的把握认为该地区高三学生是否需要心理疏导与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的抽样方法来调查估计该地区高三学生中,需要提供心理疏导的高三学生的比例?请说明理由.
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(Ⅱ)能否有99%的把握认为该地区高三学生是否需要心理疏导与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的抽样方法来调查估计该地区高三学生中,需要提供心理疏导的高三学生的比例?请说明理由.
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |