题目内容
已知f1(x)=sinx-cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2012(x)=( )
A.sinx+cosx | B.sinx-cosx | C.-sinx+cosx | D.-sinx-cosx |
∵f1(x)=sinx-cosx,∴f2(x)=f1′(x)=cosx+sinx,f3(x)=f2′(x)=-sinx+cosx,f4(x)=f3′(x)=-cosx-sinx,f5(x)=f4′(x)=sinx-cosx.
∴f5(x)=f1(x),fn+4k(x)=fn(x).
∴f2012(x)=f502×4+4(x)=f4(x)=-cosx-sinx.
故选D.
∴f5(x)=f1(x),fn+4k(x)=fn(x).
∴f2012(x)=f502×4+4(x)=f4(x)=-cosx-sinx.
故选D.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目