题目内容
14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),若a=2b,则双曲线的离心率为( )A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | 3 |
分析 直接利用双曲线的几何量的关系,求出离心率即可.
解答 解:双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),a=2b,
可得a2=4b2=4(c2-a2),
解得e=$\frac{\sqrt{5}}{2}$.
故选:A.
点评 本题考查双曲线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
4.某中学高一有21个班、高二有14个班、高三有7个班,现采用分层抽样的方法从这些班中抽取6个班对学生进行视力检查,若从抽取的6个班中再随机抽取2个班做进一步的数据分析,则抽取的2个班均为高一的概率是( )
A. | $\frac{1}{5}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
2.已知f′(x)是奇函数f(x)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是( )
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-1,0)∪(0,1) | D. | (-∞,-1)∪(1,+∞) |
9.下列函数中,在其定义域内既是奇函数又是增函数的是( )
A. | y=-x | B. | y=$\frac{1}{x}$ | C. | y=3x | D. | y=ex-e-x |
19.将2枚质地均匀的骰子抛掷一次,记向上的点数分别为a、b,则事件“a+b=5”的概率为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{9}$ |
20.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,则可归纳出式子为( )
A. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{1}{2n-1}$ | B. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{1}{2n+1}$ | ||
C. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n-1}{n}$ | D. | 1+$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}<\frac{2n}{2n+1}$ |