题目内容

16.直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1:$\left\{{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}}$(θ为参数)和曲线C2:ρ=1上,则|AB|的最小值为(  )
A.3B.$2\sqrt{5}$C.$3\sqrt{5}$D.$\sqrt{5}$

分析 把极坐标与参数方程分别化为直角坐标方程、普通方程,利用两点之间的距离公式求出圆心之间的距离,即可得出.

解答 解:曲线C1:$\left\{{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}}$(θ为参数),化为(x-3)2+(y-4)2=1,可得圆心C1(3,4),半径R=1;
曲线C2:ρ=1,化为x2+y2=1,可得圆心C2(0,0),半径r=1.
|C1C2|=$\sqrt{{3}^{2}+{4}^{2}}$=5.
∴|AB|的最小值=5-R-r=3.
故选:A.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网