题目内容

【题目】已知函数f(x)=ex﹣ex﹣2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142< <1.4143,估计ln2的近似值(精确到0.001).

【答案】解:(Ⅰ)由f(x)得f′(x)=ex+ex﹣2 ,即f′(x)≥0,当且仅当ex=ex即x=0时,f′(x)=0,
∴函数f(x)在R上为增函数.
(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e2x﹣4b(ex﹣ex)+(8b﹣4)x,
则g′(x)=2[e2x+e2x﹣2b(ex+ex)+(4b﹣2)]
=2[(ex+ex2﹣2b(ex+ex)+(4b﹣4)]
=2(ex+ex﹣2)(ex+ex+2﹣2b).
①∵ex+ex>2,ex+ex+2>4,
∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,
从而g(x)在R上为增函数,而g(0)=0,
∴x>0时,g(x)>0,符合题意.
②当b>2时,若x满足2<ex+ex<2b﹣2即 ,得 ,此时,g′(x)<0,
又由g(0)=0知,当 时,g(x)<0,不符合题意.
综合①、②知,b≤2,得b的最大值为2.
(Ⅲ)∵1.4142< <1.4143,根据(Ⅱ)中g(x)=e2x﹣e2x﹣4b(ex﹣ex)+(8b﹣4)x,
为了凑配ln2,并利用 的近似值,故将ln 代入g(x)的解析式中,

当b=2时,由g(x)>0,得
从而
,得 >2,当 时,
由g(x)<0,得 ,得
所以ln2的近似值为0.693
【解析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;
对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;
对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用 的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算 ,最后可估计ln2的近似值.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网