题目内容
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益函数为R(x)= ,其中x是仪器的产量(单位:台);
(1)将利润f(x)表示为产量x的函数(利润=总收益﹣总成本);
(2)当产量x为多少台时,公司所获利润最大?最大利润是多少元?
【答案】
(1)解:当0≤x≤400时,
当x>400时,f(x)=80000﹣100x﹣20000=60000﹣100x
所以
(2)解:当0≤x≤400时
当x=300时,f(x)max=25000,
当x>400时,f(x)=60000﹣100x<f(400)=20000<25000
所以当x=300时,f(x)max=25000
答:当产量x为300台时,公司获利润最大,最大利润为25000元
【解析】(1)利润=收益﹣成本,由已知分两段当0≤x≤400时,和当x>400时,求出利润函数的解析式;(2)分段求最大值,两者大者为所求利润最大值.
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 ,
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |