题目内容
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 ,
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】
(1)解:根据在全部50人中随机抽取1人抽到患心肺疾病生的概率为 ,可得患心肺疾病的为30人,故可得
列联表补充如下
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(2)解:因为 K2= ,即K2= = ,
所以 K2≈8.333
又 P(k2≥7.879)=0.005=0.5%,
所以,我们有 99.5%的把握认为是否患心肺疾病是与性别有关系的.
(3)解:现在从患心肺疾病的10位女性中,选出3名进行胃病的排查,
记选出患胃病的女性人数为ξ,则ξ=0,1,2,3.
故P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= = ,P(ξ=3)= ,
则ξ的分布列:
ξ | 0 | 1 | 2 | 3 |
P |
则Eξ=1× +2× +3× =0.9,
Dξ= ×(0﹣0.9)2+ ×(1﹣0.9)2+ ×(2﹣0.9)2+ ×(3﹣0.9)2=0.49
【解析】(1)根据在全部50人中随机抽取1人抽到患心肺疾病的概率为 ,可得患心肺疾病的人数,即可得到列联表;(2)利用公式求得K2 , 与临界值比较,即可得到结论.(3)在患心肺疾病的10位女性中,有3位又患有胃病,记选出患胃病的女性人数为ξ,则ξ服从超几何分布,即可得到ξ的分布列、数学期望以及方差.