题目内容

5.一个类似杨辉三角形的数阵:则第九行的第二个数为66.

分析 观察首尾两数都是1,3,5,7等为奇数,可知第n行的首尾两数,设第n(n≥2)行的第2个数构成数列{an},则有a3-a2=3,a4-a3=5,a5-a4=7,…,an-an-1=2n-3,相加得an,即可求出第九行的第二个数.

解答 解:观察首尾两数都是1,3,5,7,可知第n行的首尾两数均为2n-1
设第n(n≥2)行的第2个数构成数列{an},则有a3-a2=3,a4-a3=5,a5-a4=7,…,an-an-1=2n-3,
相加得an-a2=3+5+…+(2n-3)=$\frac{3+2n-3}{2}$×(n-2)=n(n-2)
an=3+n(n-2)=n2-2n+3,
所以第九行的第二个数为81-18+3=66.
故答案为:66.

点评 本题主要考查了数列的应用,以及利用叠加法求数列的通项,同时考查了等差数列求和,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网