题目内容

4.已知$sin(x+\frac{π}{3})=\frac{1}{3},x∈(0,π)$,则$sin(\frac{π}{6}-x)$=-$\frac{2\sqrt{2}}{3}$;$cos(2x+\frac{π}{3})$=$\frac{7+4\sqrt{6}}{18}$.

分析 由条件利用同角三角函数的基本关系、诱导公式、二倍角公式、两角差的余弦公式,求得要求式子的值.

解答 解:∵已知$sin(x+\frac{π}{3})=\frac{1}{3},x∈(0,π)$,∴x+$\frac{π}{3}$为钝角,
则$sin(\frac{π}{6}-x)$=sin[$\frac{π}{2}$-(x+$\frac{π}{3}$)]=cos(x+$\frac{π}{3}$)=-$\sqrt{{1-sin}^{2}(x+\frac{π}{3})}$=-$\frac{2\sqrt{2}}{3}$.
∴sin(2x+$\frac{2π}{3}$)=2sin(x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)=2×$\frac{1}{3}$×(-$\frac{2\sqrt{2}}{3}$)=-$\frac{4\sqrt{2}}{9}$,
cos(2x+$\frac{2π}{3}$)=2${cos}^{2}(x+\frac{π}{3})$-1=2×$\frac{8}{9}$-1=$\frac{7}{9}$,
∴$cos(2x+\frac{π}{3})$=cos[(2x+$\frac{2π}{3}$)-$\frac{π}{3}$]=cos(2x+$\frac{2π}{3}$)cos$\frac{π}{3}$+sin(2x+$\frac{2π}{3}$)sin$\frac{π}{3}$ 
=$\frac{7}{9}×\frac{1}{2}$+(-$\frac{4\sqrt{2}}{9}$)×$\frac{\sqrt{3}}{2}$=$\frac{7-4\sqrt{6}}{18}$,
故答案为:$\frac{7-4\sqrt{6}}{18}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式、二倍角公式、两角差的余弦公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网