题目内容
12.已知函数f(x)=x-a.g(x)=alnx,h(x)=f(x)-g(x),其中a是常数.(1)若f(x)对应的直线是函数g(x)图象的一条切线,求a的值;
(2)当a≤0时.若对任意不相等的x1,x2∈(0,1],都有|h(x1)-h(x2)|<2015|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求a的取值范围;
(3)若对任意的x1>x2>0,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$,求a的取值范围.
分析 (1)求导g′(x)=$\frac{a}{x}$,从而由导数的几何意义可得$\frac{a}{m}$=1,代入可得alna=a-a;从而解得;
(2)当a≤0时,h(x)=x-alnx-a在(0,1]上是增函数,不妨设0<x1<x2≤1,从而化不等式为h(x2)+$\frac{2015}{{x}_{2}}$<h(x1)+$\frac{2015}{{x}_{1}}$;从而转化为解h(x)+$\frac{2015}{x}$在(0,1]上是减函数;从而求导解得.
(3)化简可得a$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$,从而可得a>$\frac{\frac{{x}_{1}}{{x}_{2}}-1}{1+(\frac{{x}_{1}}{{x}_{2}})^{2}}$•$\frac{1}{ln(\frac{{x}_{1}}{{x}_{2}})}$,($\frac{{x}_{1}}{{x}_{2}}$>1);即a>$\frac{x-1}{1+{x}^{2}}$•$\frac{1}{lnx}$,(x>1),由$\underset{lim}{x→1}$($\frac{x-1}{1+{x}^{2}}$•$\frac{1}{lnx}$)=$\frac{1}{2}$,从而解得.
解答 解:(1)∵g(x)=alnx,∴g′(x)=$\frac{a}{x}$,
设f(x)对应的直线与函数g(x)的图象相切于点(m,alnm);
则$\frac{a}{m}$=1,
故a=m;
故点(a,alna)在函数f(x)=x-a的图象上,
即alna=a-a;
故a=1;
(2)当a≤0时,h(x)=f(x)-g(x)=x-alnx-a在(0,1]上是增函数,
不妨设0<x1<x2≤1,
∵|h(x1)-h(x2)|<2015|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,
∴h(x2)-h(x1)<2015($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$),
即h(x2)+$\frac{2015}{{x}_{2}}$<h(x1)+$\frac{2015}{{x}_{1}}$;
即h(x)+$\frac{2015}{x}$在(0,1]上是减函数;
令m(x)=h(x)+$\frac{2015}{x}$=x+$\frac{2015}{x}$-alnx-a,
则m′(x)=1-$\frac{2015}{{x}^{2}}$-$\frac{a}{x}$≤0在(0,1]上恒成立,
即a≥x-$\frac{2015}{x}$在(0,1]上恒成立,
易知x-$\frac{2015}{x}$在(0,1]上是增函数,
故a≥1-2015=-2014;
故-2014≤a≤0;
(3)∵$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$,
∴a$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$,
∵$\frac{ln{x}_{1}-ln{x}_{2}}{{x}_{1}-{x}_{2}}$>0,
∴a>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$•$\frac{{x}_{1}-{x}_{2}}{ln{x}_{1}-ln{x}_{2}}$,
即a>$\frac{\frac{{x}_{1}}{{x}_{2}}-1}{1+(\frac{{x}_{1}}{{x}_{2}})^{2}}$•$\frac{1}{ln(\frac{{x}_{1}}{{x}_{2}})}$,($\frac{{x}_{1}}{{x}_{2}}$>1);
a>$\frac{x-1}{1+{x}^{2}}$•$\frac{1}{lnx}$,(x>1),
∵当x2→x1时,x→1,
$\underset{lim}{x→1}$($\frac{x-1}{1+{x}^{2}}$•$\frac{1}{lnx}$)=$\frac{1}{2}$,
故a>$\frac{1}{2}$;
故a的取值范围为($\frac{1}{2}$,+∞).
点评 本题考查了导数的综合应用及导数的几何意义的应用,同时考查了洛必达法则的应用.
A. | $(a+b)(\frac{1}{a}+\frac{1}{b})≥4$ | B. | a3+b3≥2ab2 | C. | $\sqrt{|a-b|}≥\sqrt{a}-\sqrt{b}$ | D. | a2+b2+2≥2a+2b |
A. | 函数f(x)=1既是奇函数又是偶函数 | B. | 函数f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$是偶函数 | ||
C. | 函数f(x)=$\frac{{x}^{2}-2x}{x-2}$是奇函数 | D. | 函数f(x)=x+$\sqrt{{x}^{2}-1}$是非奇非偶函数 |
A. | 1 | B. | 0 | C. | 1或-1 | D. | -1 |