题目内容
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.
(Ⅰ)求曲线的直角坐标方程与直线的参数方程;
(Ⅱ)设直线与曲线交于两点,求的值.
【答案】(Ⅰ)曲线的直角坐标方程为:,直线的参数方程为 (为参数).
(Ⅱ).
【解析】试题分析:(Ⅰ)根据极坐标与直角坐标的互化公式,即可得到的直角坐标方程,进而得到直线的参数方程;
(Ⅱ)将直线的参数方程代入曲线的直角坐标方程,求的,即可利用的几何意义,求得.
试题解析:
(Ⅰ)因为,所以
所以,即曲线的直角坐标方程为:
直线的参数方程(为参数)
即 (为参数)
(Ⅱ)设点对应的参数分别为,
将直线的参数方程代入曲线的直角坐标方程得
整理,得,所以
因为,,
所以.
练习册系列答案
相关题目
【题目】(题文)随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”的赞成人数如下表:
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“使用微信交流”的态度与人的年龄有关.
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成的人数 | |||
不赞成的人数 | |||
合计 |
(2)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考公式:,.
参考数据:
0.100 | ||||