题目内容

【题目】在某次活动中,有5名幸运之星.5名幸运之星可获得两种奖品中的一种并规定每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得奖品抛掷点数不小于3的获得奖品.

(1)求这5名幸运之星中获得奖品的人数大于获得奖品的人数的概率

(2)设分别为获得两种奖品的人数并记求随机变量的分布列及数学期望.

【答案】(1)(2)的分布列见解析.

【解析】

首先求出5名幸运之星中,每人获得A奖品的概率和B奖品的概率.(1)获得A奖品的人数大于获得B奖品的人数,得到获得A奖品的人数可能为3,4,5,利用独立重复试验求得概率;(2)由ξ=|X﹣Y|,可得ξ的可能取值为1,3,5,同样利用独立重复试验求得概率,然后列出频率分布表,代入期望公式求期望.

5名幸运之星中,每人获得奖品的概率为奖品的概率为.

(1)要获得奖品的人数大于获得奖品的人数奖品的人数可能为3,4,5,则

所求概率为.

(2)的可能取值为1,3,5,且

所以的分布列是

1

3

5

故随机变量的数学期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网