题目内容
【题目】在某次活动中,有5名幸运之星.这5名幸运之星可获得、两种奖品中的一种,并规定:每个人通过抛掷一枚质地均为的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得奖品,抛掷点数不小于3的获得奖品.
(1)求这5名幸运之星中获得奖品的人数大于获得奖品的人数的概率;
(2)设、分别为获得、两种奖品的人数,并记,求随机变量的分布列及数学期望.
【答案】(1);(2),的分布列见解析.
【解析】
首先求出5名幸运之星中,每人获得A奖品的概率和B奖品的概率.(1)获得A奖品的人数大于获得B奖品的人数,得到获得A奖品的人数可能为3,4,5,利用独立重复试验求得概率;(2)由ξ=|X﹣Y|,可得ξ的可能取值为1,3,5,同样利用独立重复试验求得概率,然后列出频率分布表,代入期望公式求期望.
这5名幸运之星中,每人获得奖品的概率为,奖品的概率为.
(1)要获得奖品的人数大于获得奖品的人数,则奖品的人数可能为3,4,5,则
所求概率为.
(2)的可能取值为1,3,5,且,
,
,
所以的分布列是:
1 | 3 | 5 | |
故随机变量的数学期望.
【题目】某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:
月收入(百元) | ||||||
频数 | 20 | 40 | 60 | 40 | 20 | 20 |
认同超前消费的人数 | 8 | 16 | 28 | 21 | 13 | 16 |
(1)根据以上统计数据填写下面列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;
月收入不低于8000元 | 月收入低于8000元 | 总计 | |
认同 | |||
不认同 | |||
总计 |
(2)若从月收入在的被调查对象中随机选取2人进行调查,求至少有1个人不认同“超前消费”的概率.
参考公式:(其中).
附表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |