题目内容
5.计算根式$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+1}}}}$的值.分析 化简可得$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+1}}}}$=$\sqrt{2+\sqrt{2+\frac{\sqrt{2}}{2}(1+\sqrt{3})}}$,从而结合tan60°=$\sqrt{3}$可化简得原式=$\sqrt{2+\sqrt{2+2sin105°}}$,再由二倍角公式可得2+2sin105°=$\sqrt{2}$(sin$\frac{75°}{2}$+cos$\frac{75°}{2}$),从而连续应用解得.
解答 解:$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+1}}}}$
=$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}$
=$\sqrt{2+\sqrt{2+\frac{1+\sqrt{3}}{\sqrt{2}}}}$
=$\sqrt{2+\sqrt{2+\frac{\sqrt{2}}{2}(1+\sqrt{3})}}$
=$\sqrt{2+\sqrt{2+\frac{\sqrt{2}}{2}(1+\frac{sin60°}{cos60°})}}$
=$\sqrt{2+\sqrt{2+2sin105°}}$
=$\sqrt{2+\sqrt{2+2sin75°}}$
=$\sqrt{2+\sqrt{2}(sin\frac{75°}{2}+cos\frac{75°}{2})}$
=$\sqrt{2+2sin\frac{165°}{2}}$
=$\sqrt{2(sin\frac{165°}{4}+cos\frac{165°}{4})^{2}}$
=$\sqrt{2}$(sin$\frac{165°}{4}$+cos$\frac{165°}{4}$)
=2sin($\frac{165°}{4}$+45°)
=2sin$\frac{345°}{4}$
=2sin(90°-$\frac{15°}{4}$)
=2cos$\frac{15°}{4}$.
点评 本题考查了三角恒等变换的应用,属于基础题.
A. | p | B. | q | C. | pq | D. | p+q |
A. | 2$\sqrt{7}$ | B. | 4$\sqrt{3}$ | C. | 6 | D. | 3 |