题目内容
【题目】通过随机询问100性别不同的大学生是否爱好某项运动,得到如下2×2列联表:
男 | 女 | 总计 | |
爱好 | 40 | ||
不爱好 | 25 | ||
总计 | 45 | 100 |
(1)将题中的2×2列联表补充完整;
(2)能否有99%的把握认为断爱好该项运动与性别有关?请说明理由;
附:K2= ,
p(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
(3)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建了“运动达人社”,现从“运动达人设”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.
【答案】
(1)解: 2×2列联表如下:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
(2)解:K2= ≈8.25>6.635,
∴99%的把握认为断爱好该项运动与性别有关;
(3)解:由题意,抽取6人中,男生4名,女生2名,选出3人中的女大学生人数为X,X的取值为0,1,2,
则P(X=0)= = ,P(X=1)= = ,P(X=2)= = .
X的分布列为
X | 0 | 1 | 2 |
P |
E(X)=0 ×+1× +2× =1
【解析】(1)根据2×2列联表数据共享将表中空白部分数据补充完整.(2)求出K2 , 与临界值比较,即可得出结论;(3)由题意,抽取6人中,男生4名,女生2名,选出3人中的女大学生人数为X,X的取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).
【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 | |||
女性市民 | |||
合计 |
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.
附:,其中.