题目内容
【题目】已知函数f(x)=|x﹣2|+|2x+a|,a∈R.
(1)当a=1时,解不等式f(x)≥5;
(2)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.
【答案】
(1)解:当a=1时,f(x)=|x﹣2|+|2x+1|,.
由f(x)≥5得x﹣2|+|2x+1|≥5.
当x≥2时,不等式等价于x﹣2+2x+1≥5,解得x≥2,所以x≥2;
当﹣ <x<2时,不等式等价于2﹣x+2x+1≥5,即x≥2,所以此时不等式无解;
当x≤﹣ 时,不等式等价于2﹣x﹣2x﹣1≥5,解得x≤﹣ ,所以x≤﹣ .
所以原不等式的解集为(﹣∞,﹣ ]∪[2,+∞).
(2)解:f(x)+|x﹣2|=2|x﹣2|+|2x+a|=|2x﹣4|+|2x+a|≥|2x+a﹣(2x﹣4)|=|a+4|
因为原命题等价于(f(x)+|x﹣2|)min<3,
所以|a+4|<3,所以﹣7<a<﹣1为所求实数a的取值范围
【解析】(1)当a=1时,根据绝对值不等式的解法即可解不等式f(x)≥5;(2)求出f(x)+|x﹣2|的最小值,根据不等式的关系转化为(f(x)+|x﹣2|)min<3即可求a的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
【题目】在某超市,随机调查了100名顾客购物时使用手机支付支付的情况,得到如下的列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有99.9%的把握认为“超市购物用手机支付与年龄有关”.
(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 28 | ||
合计 | 100 |
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
【题目】通过随机询问100性别不同的大学生是否爱好某项运动,得到如下2×2列联表:
男 | 女 | 总计 | |
爱好 | 40 | ||
不爱好 | 25 | ||
总计 | 45 | 100 |
(1)将题中的2×2列联表补充完整;
(2)能否有99%的把握认为断爱好该项运动与性别有关?请说明理由;
附:K2= ,
p(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
(3)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建了“运动达人社”,现从“运动达人设”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.