题目内容
【题目】在平面直角坐标系中,圆C的方程为 (θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线l的极坐标方程为ρcosθ+ρsinθ=m(m∈R).
(1)当m=3时,判断直线l与C的位置关系;
(2)当C上有且只有一点到直线l的距离等于 时,求C上到直线l距离为2 的点的坐标.
【答案】
(1)解:圆C的普通方程为(x﹣1)2+(y﹣1)2=2,
∴圆心坐标为(1,1),半径r= .
m=3时,直线l的直角坐标方程为x+y﹣3=0.
∴圆心C到直线l的距离d= = <r.
∴直线l与圆C相交.
(2)解:直线l的普通方程为x+y﹣m=0.
∵C上有且只有一点到直线l的距离等于 ,
∴直线l与圆C相离,且圆心到直线的距离为 .
∴圆C上到直线l的距离等于2 的点在过圆心C(1,1)且与直线l平行的直线上.
∴过圆心C(1,1)且与直线l平行的直线的参数方程为: (t为参数).
将: (t为参数)代入圆C的普通方程得t2=2,
∴t1= ,t2=﹣ .
当t= 时, ,当t=﹣ 时, .
∴C上到直线l距离为2 的点的坐标为(0,2),(2,0)
【解析】(1)将曲线方程化成直角坐标方程,计算圆心到直线的距离与圆的半径比较大小得出结论;(2)由题意可知直线与圆相离,且圆心到直线l的距离为2 ,故到直线l的距离等于2 的点在过圆心且与直线l平行的直线上,求出此直线的参数方程代入圆的方程求出该点对应的参数,得出该点的坐标.
【题目】通过随机询问100性别不同的大学生是否爱好某项运动,得到如下2×2列联表:
男 | 女 | 总计 | |
爱好 | 40 | ||
不爱好 | 25 | ||
总计 | 45 | 100 |
(1)将题中的2×2列联表补充完整;
(2)能否有99%的把握认为断爱好该项运动与性别有关?请说明理由;
附:K2= ,
p(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
(3)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建了“运动达人社”,现从“运动达人设”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.
【题目】新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
销量(万辆) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测2018年5月份当地该品牌新能源汽车的销量;
(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:
补贴金额预期值区间(万元) | ||||||
20 | 60 | 60 | 30 | 20 | 10 |
将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为,求的分布列及数学期望.
参考公式及数据:①回归方程,其中,,②,.