题目内容
【题目】已知函数的图象为不间断的曲线,定义域为,规定:
①如果对于任意,都有,则称函数是凹函数.
②如果对于任意,都有,则称函数是凸函数.
(1)若函数(且)是凹函数,试写出实数的取值范围;(直接写出结果,无需证明);
(2)判断函数是凹函数还是凸函数,并加以证明;
(3)若对任意的且,,试证明存在,使.
【答案】(1);(2)凸函数,证明见解析;(3)见解析.
【解析】
(1)根据对数函数的图象性质,结合新定义,直接求解即可;
(2)利用作差比较法,根据新定义,直接判断、证明即可;
(3)根据等式,构造新函数,利用零点存在原理直接证明即可.
(1)由函数图象可知:;
(2)因为,故,
所以,则函数是凸函数.
(3)设,
因为
,
又因为,
所以,所以在区间上有零点,
即存在,使.
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.
②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中