题目内容
3.已知函数f(x)=|x-1|+|x-a|.(1)当a=2时,解不等式f(x)≥4;
(2)若不等式f(x)≥a恒成立,求实数a的取值范围.
分析 (1)当a=2时,由f(x)≥4得$\left\{{\begin{array}{l}{x≤1}\\{3-2x≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{1<x<2}\\{1≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x-3≥4}\end{array}}\right.$,从而解得;
(2)由不等式的性质得f(x)≥|a-1|,从而化恒成立为|a-1|≥a,从而解得.
解答 解:(1)当a=2时,由f(x)≥4得,
|x-1|+|x-2|≥4,
即$\left\{{\begin{array}{l}{x≤1}\\{3-2x≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{1<x<2}\\{1≥4}\end{array}}\right.$或$\left\{{\begin{array}{l}{x≥2}\\{2x-3≥4}\end{array}}\right.$,
解得:$x≤-\frac{1}{2}$,或$x≥\frac{7}{2}$;
故原不等式的解集为$\left\{{x\left|{x≤-\frac{1}{2},}\right.}\right.$或$\left.{x≥\frac{7}{2}}\right\}$.
(2)由不等式的性质得:f(x)≥|a-1|,
要使不等式f(x)≥a恒成立,
则只要|a-1|≥a,
解得:$a≤\frac{1}{2}$,
所以实数a的取值范围为$({-∞,\frac{1}{2}}]$.
点评 本题考查了绝对值不等式的应用及恒成立问题的处理方法.
练习册系列答案
相关题目
13.已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,5},则∁U(A∪B)等于( )
A. | {6,8} | B. | {5,7} | C. | {4,6,8} | D. | {1,3,5,6,8} |
14.对于任意两个实数a,b定义运算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≤b)}\\{b(a>b)}\end{array}\right.$,则函数f(x)=x2*[(6-x)*(2x+15)]的最大值为( )
A. | 25 | B. | 16 | C. | 9 | D. | 4 |
18.已知函数f(n)=$\left\{\begin{array}{l}{0,x=1}\\{f(n-1)+3,(n∈{N^*},n≥2)}\end{array}$,则f(3)等于( )
A. | 0 | B. | 3 | C. | 6 | D. | 9 |
8.设变量x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 2x-y-3≤0\end{array}\right.$则目标函数z=2x+3y的最大值为( )
A. | 7 | B. | 8 | C. | 22 | D. | 23 |
12.焦点为(0,±3),且与双曲线$\frac{x^2}{2}-{y^2}=1$有相同的渐近线的双曲线方程是( )
A. | $\frac{x^2}{3}-\frac{y^2}{6}=1$ | B. | $\frac{y^2}{3}-\frac{x^2}{6}=1$ | C. | $\frac{y^2}{6}-\frac{x^2}{3}=1$ | D. | $\frac{x^2}{6}-\frac{y^2}{3}=1$ |