题目内容

13.在数列{an}中,已知a1=1,an+1=$\frac{2{a}_{n}}{3{a}_{n}+2}$(n∈N+),求数列{an}的通项公式.

分析 把已知的数列递推式变形,得到数列{$\frac{1}{{a}_{n}}$}是以1为首项,以$\frac{3}{2}$为公差的等差数列,由等差数列的通项公式得答案.

解答 解:由an+1=$\frac{2{a}_{n}}{3{a}_{n}+2}$,得$\frac{1}{{a}_{n+1}}=\frac{3{a}_{n}+2}{2{a}_{n}}=\frac{1}{{a}_{n}}+\frac{3}{2}$,
即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=\frac{3}{2}$,
又a1=1,
∴数列{$\frac{1}{{a}_{n}}$}是以1为首项,以$\frac{3}{2}$为公差的等差数列,
∴$\frac{1}{{a}_{n}}=1+\frac{3}{2}(n-1)=\frac{3}{2}n-\frac{1}{2}$=$\frac{3n-1}{2}$,
则${a}_{n}=\frac{2}{3n-1}$.

点评 本题考查了数列递推式,考查了等差关系的确定,考查了等差数列的通项公式,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网