题目内容
【题目】已知实数a>0,集合 ,集合B={x||2x﹣1|>5}.
(1)求集合A、B;
(2)若A∩B≠,求a的取值范围.
【答案】
(1)解:a>0时,集合 ={x|﹣1<x<a},
集合B={x||2x﹣1|>5}={x|2x﹣1>5或2x﹣1<﹣5}
={x|x>3或x<﹣2};
(2)解:当A∩B≠时,a>3,
∴a的取值范围是a>3
【解析】本题考查的是集合的概念以及不等式的解法,尤其是线性不等式的等价变形。
【考点精析】认真审题,首先需要了解集合的表示方法-特定字母法(①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合),还要掌握集合的交集运算(交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立)的相关知识才是答题的关键.
练习册系列答案
相关题目