题目内容

【题目】函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=ex , 且f(1)=e,则(
A.f(x)的最小值为e??
B.f(x)的最大值为e
C.f(x)的最小值为 ??
D.f(x)的最大值为

【答案】A
【解析】解:设g(x)=xf(x), ∴g′(x)=xf′(x)+f(x)=ex
∴g(x)=ex
∴xf(x)=ex
∴f(x)=
∴f′(x)=
令f′(x)=0,解得x=1,
当f′(x)>0,时,解得x>1,函数f(x)在(1,+∞)单调递增,
当f′(x)<0,时,解得0<x<1,函数f(x)在(1,+∞)单调递减,
∴f(x)min=f(1)=e,
故选:A.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网