题目内容

【题目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求实数m的值;
(2)设全集为R,若ARB,求实数m的取值范围.

【答案】
(1)解:由已知得A={x|x2﹣2x﹣8≤0,x∈R}=[﹣2,4],

B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }=[m﹣3,m].

∵A∩B=[2,4],∴ ∴m=5.


(2)解:∵B=[m﹣3,m],∴RB=(﹣∞,m﹣3)∪(m,+∞).

∵ARB,

∴m﹣3>4或m<﹣2.

∴m>7或m<﹣2.

∴m∈(﹣∞,﹣2)∪(7,+∞).


【解析】(1)根据所给的两个集合的不等式,写出两个集合对应的最简形式,根据两个集合的交集,看出两个集合的端点之间的关系,求出结果.(2)根据所求的集合B,写出集合B的补集,根据集合A是B的补集的子集,求出两个集合的端点之间的关系,求出m的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网