搜索
题目内容
已知两点
、
,且
是
与
的等差中项,则动点
的轨迹方程是( )
A.
B.
C.
D.
试题答案
相关练习册答案
C
试题分析:设
,由题可知
,根据两点间距离公式得
,化简可得
.
练习册系列答案
创新方案高中同步创新课堂系列答案
深圳金卷导学案系列答案
同步练习江苏系列答案
新课程学习与测评同步学习系列答案
走进新课程课课练系列答案
百校联盟金考卷系列答案
步步高学案导学与随堂笔记系列答案
诚成教育学业评价系列答案
创新课时精练系列答案
创新设计课堂讲义系列答案
相关题目
已知椭圆C:
+
=1(a>b>0)的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-
,求斜率k的值;
②已知点M(-
,0),求证:
·
为定值.
(本小题满分12分,(1)小问4分,(2)小问8分)已知
为椭圆
上两动点,
分别为其左右焦点,直线
过点
,且不垂直于
轴,
的周长为
,且椭圆的短轴长为
.
(1)求椭圆
的标准方程;
(2)已知点
为椭圆
的左端点,连接
并延长交直线
于点
.求证:直线
过定点.
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
(2011•山东)在平面直角坐标系xOy中,已知椭圆
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).
(1)求m
2
+k
2
的最小值;
(2)若|OG|
2
=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.
已知
是椭圆和双曲线的公共焦点,
是他们的一个公共点,且
,则椭圆和双曲线的离心率的倒数之和的最大值为( )
A.
B.
C.3
D.2
已知F
1
、F
2
为椭圆
的两个焦点,过F
1
的直线交椭圆于A、B两点,若
,则
= _____________.
已知椭圆
的一个焦点为
,且离心率为
.
(1)求椭圆方程;
(2)斜率为
的直线
过点
,且与椭圆交于
两点,
为直线
上的一点,若△
为等边三角形,求直线
的方程.
已知
是椭圆
上的点,则
的取值范围是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总