题目内容
(2011•山东)在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.
(1)2 (2)见解析
(1)设y=kx+t(k>0),
由题意,t>0,由方程组,得(3k2+1)x2+6ktx+3t2﹣3=0,
由题意△>0,
所以3k2+1>t2,设A(x1,y1),B(x2,y2),
x1+x2=﹣,所以y1+y2=,
∵线段AB的中点为E,∴xE=,yE=,
此时kOE==﹣.
所以OE所在直线方程为y=﹣x,
又由题设知D(﹣3,m).
令x=﹣3,得m=,即mk=1,
所以m2+k2≥2mk=2,
(2)(i)证明:由(1)知OD所在直线方程为y=﹣x,
将其代入椭圆C的方程,并由k>0,解得G(﹣,),
又E(,),D(﹣3,),
由距离公式和t>0,得
|OG|2=(﹣)2+()2=,
|OD|=,
|OE|==.
由|OG|2=|OD|?|OE|,
得t=k,
因此直线l的方程为y=k(x+1),
所以直线l恒过定点(﹣1,0);
(ii)由(i)得G(﹣,),
若点B,G关于x轴对称,则B(﹣,﹣),
将点B坐标代入y=k(x+1),
整理得,
即6k4﹣7k2+1=0,解得k2=或k2=1,
验证知k2=时,不成立,故舍去
所以k2=1,又k>0,故k=1,
此时B(﹣,﹣),G(﹣,)关于x轴对称,
又由(I)得x1=0,y1=1,所以点A(0,1),
由于△ABG的外接圆的圆心在x轴上,可设△ABG的外接圆的圆心为(d,0),
因此d2+1=(d+)2+,解得d=﹣,
故△ABG的外接圆的半径为r==,
所以△ABG的外接圆方程为.
由题意,t>0,由方程组,得(3k2+1)x2+6ktx+3t2﹣3=0,
由题意△>0,
所以3k2+1>t2,设A(x1,y1),B(x2,y2),
x1+x2=﹣,所以y1+y2=,
∵线段AB的中点为E,∴xE=,yE=,
此时kOE==﹣.
所以OE所在直线方程为y=﹣x,
又由题设知D(﹣3,m).
令x=﹣3,得m=,即mk=1,
所以m2+k2≥2mk=2,
(2)(i)证明:由(1)知OD所在直线方程为y=﹣x,
将其代入椭圆C的方程,并由k>0,解得G(﹣,),
又E(,),D(﹣3,),
由距离公式和t>0,得
|OG|2=(﹣)2+()2=,
|OD|=,
|OE|==.
由|OG|2=|OD|?|OE|,
得t=k,
因此直线l的方程为y=k(x+1),
所以直线l恒过定点(﹣1,0);
(ii)由(i)得G(﹣,),
若点B,G关于x轴对称,则B(﹣,﹣),
将点B坐标代入y=k(x+1),
整理得,
即6k4﹣7k2+1=0,解得k2=或k2=1,
验证知k2=时,不成立,故舍去
所以k2=1,又k>0,故k=1,
此时B(﹣,﹣),G(﹣,)关于x轴对称,
又由(I)得x1=0,y1=1,所以点A(0,1),
由于△ABG的外接圆的圆心在x轴上,可设△ABG的外接圆的圆心为(d,0),
因此d2+1=(d+)2+,解得d=﹣,
故△ABG的外接圆的半径为r==,
所以△ABG的外接圆方程为.
练习册系列答案
相关题目