题目内容
【题目】已知椭圆: ()的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
【答案】(Ⅰ);(Ⅱ).
【解析】试题分析:(1)由,以原点为圆心,椭圆的长半轴为半径与直线相切,求出的值,由此可求出椭圆的方程;
(2)由得,由此利用韦达定理、向量的数量积,结合已知条件能求出在轴上存在点,使为定值,定点为。
试题解析:(Ⅰ)由,得,即,①
又以原点为圆心,椭圆的长半轴长为半径的圆为,
且圆与直线相切,
所以,代入①得,
则.
所以椭圆的方程为.
(Ⅱ)由得,且
设,则,
根据题意,假设轴上存在定点,使得为定值,则有
要使上式为定值,即与无关,则应,
即,此时为定值,定点为.
【题目】下表给出三种食物的维生素含量及其成本:
|
| ||
维生素A(单位/千克) | 4000 | 5000 | 300 |
维生素B(单位/千克) | 700 | 100 | 300 |
成本(元/千克) | 6 | 4 | 3 |
现欲将三种食物混合成本100千克的混合食品,要求至少含35000单位维生素A,40000单位维生素B,采用何种配比成本最小?
【题目】我校举行的 “青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ▓ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | ▓ | ▓ |
(1)求出的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;
(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。