题目内容
【题目】松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利. 已知某条线路通车后,电车的发车时间间隔(单位:分钟)满足. 经市场调研测算,电车载客量与发车时间间隔相关,当时电车为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人.记电车载客量为.
(1)求的表达式,并求当发车时间间隔为分钟时,电车的载客量;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?
【答案】(1),电车的载客量为人;(2)当发车时间间隔分钟时,该线路每分钟的净收益最大.
【解析】
(1)由题意可得(为常数),结合可求出,进而可求出的值;
(2)由题意得出关于的分段函数表达式,利用基本不等式和函数单调性分段求出最大值,取两者中的最大值即可.
(1)由题意知(为常数 )
,解得,
所以,所以(人),
即当发车时间间隔为分钟时,电车的载客量为人;
(2)由可得.
当时,,
当且仅当时等号成立;
当时,函数单调递减,则,当时等号成立
因此,当发车时间间隔分钟时,该线路每分钟的净收益最大,最大值为元.
【题目】对于定义域为R的函数y=f(x),部分x与y的对应关系如表:
x | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 0 | 2 | 3 | 2 | 0 | ﹣1 | 0 | 2 |
(1)求f{f[f(0)]};
(2)数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,求x1+x2+…+x4n;
(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).
【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照共6组进行统计,得到男生、女生每周运动的时长的统计如下(表1、2),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.
表1:男生
时长 | ||||||
人数 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
时长 | ||||||
人数 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;
(2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.
每周运动的时长小于15小时 | 每周运动的时长不小于15小时 | 总计 | |
男生 | |||
女生 | |||
总计 |
参考公式:,其中.
参考数据:
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |