题目内容
【题目】如图,把长为6,宽为3的矩形折成正三棱柱,三棱柱的高度为3,矩形的对角线和三棱柱的侧棱的交点记为E,F.
(1)求三棱柱的体积;
(2)求三棱柱中异面直线与所成角的大小.
【答案】(1) ;(2) .
【解析】
(1)根据对折的方法可求出正三棱柱的底面正三角形的边长,最后利用棱柱的体积公式求出即可.
(2)建立空间直角坐标系,利用空间向量的夹角公式求出即可.
(1)由操作可知;该正三棱柱的底面是边长2的正三角形,高为3.因此体积为:
;
(2) 因为矩形的对角线和三棱柱的侧棱的交点记为E,F.
所以
以为坐标原点,在平面内,过作的垂线为轴,以所在直线为轴,以所在直线为建立如图所示的空间直角坐标系,如下图:
设三棱柱中异面直线与所成角为,
.
所以三棱柱中异面直线与所成角的大小为.
【题目】某市对各老旧小区环境整治效果进行满意度测评,共有10000人参加这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
组别 | 分组 | 频数 | 频率 |
1 | 3 | 0.06 | |
2 | 15 | 0.3 | |
3 | 21 | ||
4 | 3 | 0.12 | |
5 | 0.1 | ||
合计 | 1.00 |
(1)求出表中,,的值;
(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积(单位:亩) | 1 | 2 | 3 | 4 | 5 |
管理时间(单位:月) | 8 | 10 | 13 | 25 | 24 |
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。
参考公式:
其中。临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考数据: