题目内容
11.先将函数y=sin2x的图象向右平移$\frac{π}{5}$个长度单位,然后将所得图象横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,此时函数的解析式为( )A. | y=sin(4x-$\frac{2π}{5}$) | B. | y=sin(4x-$\frac{π}{5}$) | C. | y=sin(x-$\frac{2π}{5}$) | D. | y=sin(x-$\frac{π}{5}$) |
分析 根据三角函数的平移变换,周期变换之间的关系即可得到结论.
解答 解:将函数y=sin2x图象上所有点向右平移$\frac{π}{5}$个单位,
所得图象的解析式为y=sin2(x-$\frac{π}{5}$)=sin(2x-$\frac{2π}{5}$),
然后把所得图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),
得到解析式为y=sin(4x-$\frac{2π}{5}$).
故选:A.
点评 本题考查了y=Asin(ωx+φ)型函数图象的平移,注意变化顺序是关键,是中档题.
练习册系列答案
相关题目
1.某市热线网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票,按照该市暴雨前后两个时间各收集了50份有效投票,所得统计结果如表
已知工作人员从所有投票中任取一张,取到“不支持投入”的投票概率为$\frac{2}{5}$
(Ⅰ)求列联表中的数据x,y,A,B额值;并绘制条形图,通过图形判断本次暴雨是否影响到该市民众对加大修建城市地下排水设施的投入的态度?
(Ⅱ)能够有多大把握认为暴雨与该市民众是否赞成加大修建城市地下排水设施的投入有关?
(Ⅲ)用样本估计总体,在该市全体市民中任意选取4人,其中“支持加大修建城市地下排水设施的资金投入”的人数记为ξ,求ξ的分布列和数学期望.附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$
支持 | 不支持 | 总计 | |
暴雨后 | x | y | 50 |
暴雨前 | 20 | 30 | 50 |
总计 | A | B | 100 |
(Ⅰ)求列联表中的数据x,y,A,B额值;并绘制条形图,通过图形判断本次暴雨是否影响到该市民众对加大修建城市地下排水设施的投入的态度?
(Ⅱ)能够有多大把握认为暴雨与该市民众是否赞成加大修建城市地下排水设施的投入有关?
(Ⅲ)用样本估计总体,在该市全体市民中任意选取4人,其中“支持加大修建城市地下排水设施的资金投入”的人数记为ξ,求ξ的分布列和数学期望.附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$
P(K2≤k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
16.某中学调查了某班全部50名同学参加数学兴趣小组和物理兴趣小组的情况,数据如下表:(单位:人)
(Ⅰ)从该班随机选一名同学,求该同学至少参加上述一个兴趣小组的概率;
(Ⅱ)在既参加数学兴趣小组,又参加物理兴趣小组的7名同学中,有4名男同学A,B,C,D,3名女同学a,b,c,现从这4名男同学和3名女同学中各随机选1人,求A被选中且a未被选中的概率.
参加数学兴趣小组 | 不参加数学兴趣小组 | |
参加物理兴趣小组 | 7 | 10 |
不参加物理兴趣小组 | 7 | 26 |
(Ⅱ)在既参加数学兴趣小组,又参加物理兴趣小组的7名同学中,有4名男同学A,B,C,D,3名女同学a,b,c,现从这4名男同学和3名女同学中各随机选1人,求A被选中且a未被选中的概率.
20.某校为了调查高三年级学生某次联考数学成绩情况,用简单随机抽样,抽取了50名高三年级学生,以他们的数学成绩(百分制)作为样本,得到如下的频数分布表:
(Ⅰ)若该校高三年级每位学生被抽取的概率为0.1,求该校高三年级学生的总人数;
(Ⅱ)估计这次联考该校高三年级学生数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样数据,能否认为该校高三年级本次联考数学成绩符合“优秀(80分及80分以上为优秀)率不低于25%”的要求?
频数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 3 | 13 | 19 | 11 | 4 |
(Ⅱ)估计这次联考该校高三年级学生数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)根据以上抽样数据,能否认为该校高三年级本次联考数学成绩符合“优秀(80分及80分以上为优秀)率不低于25%”的要求?